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The eighth edition of Research in Education has the same goals as the previous edi-
tions. The book is meant to be used as a research reference or as a text in an intro-
ductory course  in research methods. It is appropriate for graduate students
enrolled in a research seminar, for those writing a thesis or dissertation, or for those
who carry on research as a professional activity. All professional workers should be
familiar with the methods of research and the analysis of data. If only as consumers,
professionals should understand some of the techniques used in identifying prob-
lems, forming hypotheses, constructing and using data-gathering instruments,
designing research studies, and employing statistical procedures to analyze data.
They should also be able to use this information to interpret and critically analyze
research reports that appear in professional journals and other publications.

No introductory course can be expected to confer research competence, nor
can any book present all relevant information. Research skill and understanding
are achieved only through the combination of coursework and experience. Graduate
students may find it profitable to carry on a small-scale study as a way of learning
about research.

This edition expands and clarifies a number of ideas presented in previous
editions. Additional concepts, procedures, and especially examples have been
added. Each of the five methodology chapters has the text of an entire published
article following it, which illustrates that type of research. Nothing has been
deleted from the seventh edition other than a few examples of research that have
been replaced with more recent and appropriate examples. An appendix (B) has
been added that contains a data set for use by students in Chapters 10,11,  and 12.
This edition has been written to conform to the guidelines of the American Psycho-
logical Association’s (APA)  Publications Manual (4th ed.). The writing style sug-
gested in Chapter 3 is also in keeping with the APA manual.

Many of the topics covered in this book may be peripheral to the course objec-
tives of some  instructors. We do not suggest that all of the topics in this book be
included in a single course. We recommend that instructors use the topics selec-
tively and in the sequence that they find most appropriate. Students can then use
the portions remaining  in subsequent courses, to assist in carrying out a thesis,
and/or as a reference.

xiii
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This revision benefited from the comments of Professor Kahn’s students, who
had used the earlier editions of this text. To them and to reviewers Barbara Boe,
Carthage College; John A. Jensen, Boston College; Jerry McGee, Sam Houston
State; and Gene Gloekner,  Colorado State University, we express our appreciation.
We also wish to thank Michelle Chapman and Tam O’Brien who assisted in the
preparation of this edition. We wish to acknowledge the cooperation of the Uni-
versity of Illinois at Chicago Library and Computer Center; SPSS, Inc.; and SAS
Institute, Inc. Finally, we are grateful to our wives, Solveig  Ager  Best and Kathleen
Cuerdon-Kahn, for their encouragement and support.

J.W.B.
1. VK.



DESCRIPTIVE
DATA ANALYSIS

Because this textbook concentrates on educational research methods, the follow-
ing discussion of statistical analysis is in no sense complete or exhaustive. Only
some of the most simple and basic concepts are presented. Students whose math-
ematical experience includes high school algebra should be able to understand the
logic and the computational processes involved and should be able to follow the
examples without difficulty

The purpose of this discussion is threefold:

1. To help the student, as a consumer, develop an understanding of statistical ter-
minology and the concepts necessary to read with understanding some of the
professional literature in educational research.

2. To help the student develop enough competence and know-how to carry on
research studies using simple types of analysis.

3. To prepare the student for more advanced coursework in statistics.

The emphasis is on intuitive understanding and practical application rather
than on the derivation of mathematical formulas. Those who expect and need to
develop real competence in educational research will have to take some of the fol-
lowing steps:

1. Take one or more courses in behavioral statistics and experimental design
2. Study more specialized textbooks in statistics, particularly those dealing with

statistical inference (e.g., Glass & Hopkins, 1996; Hays, 1981; Heiman, 1996;
Kerlinger,  1986; Kirk, 1995; Siegel, 1956; Shawlson,  1996; Wirier,  1971).

3. Read research studies in professional journals extensively and critically.
4. Carry on research studies involving some serious use of statistical procedures.

337
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WHAT IS STATISTICS?

Statistics is a body of mathematical techniques or processes for gathering, organiz-
ing, analyzing, and interpreting numerical data. Because most research yields such
quantitative data, statistics is a basic tool of measurement, evaluation, and research.

The word statistics is sometimes used to describe the numerical data gathered.
Statistical data describe group behavior or group characteristics abstracted from a
number of individual observations that are combined to make generalizations
possible.

Everyone is familiar with such expressions as “the average family income,”
“the typical white-collar worker,” or “the representative city” These are statistical
concepts and, as group characteristics, may be expressed in measurement of age,
size, or any other traits that can be described quantitatively. When one says that
“the average fifth-grade boy is 10 years old,” one is generalizing about all fifth-
grade boys, not any particular boy. Thus, the statistical measurement is an abstrac-
tion that may be used in place of a great mass of individual measures.

The research worker who uses statistics is concerned with more than the manip-
ulation of data. The statistical method serves the fundamental purposes of description
and analysis, and its proper application involves answering the following questions:

1. What facts need to be gathered to provide the information necessary to answer
the question or to test the hypothesis?

2. How are these data to be selected, gathered, organized, and analyzed?
3. What assumptions underlie the statistical methodology to be employed?
4. What conclusions can be validly drawn from the analysis of the data?

Research consists of systematic observation and description of the character-
istics or properties of objects or events for the purpose of discovering relationships
between variables. The ultimate purpose is to develop generalizations that may be
used to explain phenomena and to predict future occurrences. To conduct research,
one must establish principles so that the observation and description have a com-
monly understood meaning. Measurement is the most precise and universally
accepted process of description, assigning quantitative values to the properties of
objects and events.

PARAMETRIC AND NONPARAMETRIC DATA

In the application of statistical treatments, two types of data are recognized:

1. Parametric data. Data of this type are measured data, and parametric statistical
tests assume that the data are normally, or nearly normally, distributed. Para-
metric tests are applied to both interval- and ratio-scaled data.

2. Nonparametric  data. Data of this type are either counted (nominal) or ranked
(ordinal). Nonparametric tests, sometimes known as distribution-free tests, do
not rest on the more stringent assumption of normally distributed populations.
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TABLE 10.1 Levels of Quantitative Description1
Data SOIIE

Level Scale Process Treatment Appropriate Tests
4 Ratio measured equal

intervals
true zero i test
ratio relationship analysis of vdndnce

parametric analysis of covariance
factor anaiy+

3 Lntervai measured equal Pearson’s I
intervals

no true zero

2 Ordinal ranked in order Spearman’s rho ( p)
Mann-Whitney
Wilcoxon

~ nonparametric
1 Nominal classified and chi square

counted median
sw

Table 10.1 presents a graphic summary of the levels of quantitative descrip-
tion and the types of statistical analysis appropriate for each level. These concepts
will be developed later in the discussion.

However, one should be aware that many of the parametric statistics (t test,
analysis of variance, and Pearson’s Y in particular) are still appropriate even when
the assumption of normality is violated. This robustness has been demonstrated
for the t test, analysis of variance, and, to a lesser extent, analysis of covariance by
a number of researchers including Glass, Peckham, and Sanders (1972),  Lunney
(1970),  and Mandeville (1972). Thus, with ordinal data and even with dichoto-
mous data (two choices such as pass-fail), these statistical procedures, which were
designed for use with interval and ratio data, may be appropriate and useful. Pear-
son’s r, which can also be used with any type of data, will be discussed later in this
chapter.

DESCRIPTIVE AND INFERENTIAL ANALYSIS

Until now we have not discussed the limits to which statistical analysis may be
generalized. Two types of statistical application are relevant:

Descriptive Analysis
Descriptive statistical analysis limits generalization to the particular group of
individuals observed. No conclusions are extended beyond this group, and any
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similarity to those outside the group cannot be assumed. The data describe one
group and that group only. Much simple action research involves descriptive anal-
ysis and provides valuable information about the nature of a particular group of
individuals. Assessment studies (see Chapter 5) also often rely solely or heavily
on descriptive statistics.

Inferential Analysis
Inferential statistical analysis always involves the process of sampling and the
selection of a small group assumed to be related to the population from which it
is drawn. The small group is known as the sample, and the large group is the pop-
ulation. Drawing conclusions about populations based on observations of samples
is the purpose of inferential analysis.

A statistic is a measure based on observations of the characteristics of a sam-
ple. A statistic computed from a sample may be used to estimate a parameter,  the
corresponding value in the population from which the sample is selected. Statis-
tics are usually represented by letters of our Roman alphabet such as X, S, and Y.
Parameters, on the other hand, are usually represented by letters of the Greek alpha-
bet such as ,u, g, or p.

Before any assumptions can be made, it is essential that the individuals selected
be chosen in such a way that the small group, or sample, approximates the larger
group, or population. Within a margin of error, which is always present, and by
the use of appropriate statistical techniques, this approximation can be assumed,
making possible the estimation of population characteristics by an analysis of the
characteristics of the sample.

It should be emphasized that when data are derived from a group without
careful sampling procedures, the researcher should carefully state that findings
apply only to the group observed and may not apply to or describe other indi-
viduals or groups. The statistical theory of sampling is complex and involves the
estimation of erra of inferred measurements, error that is inherent in estimating
the relationship between a random sample and the population from which it is
drawn. Inferential data analysis is presented in Chapter 11.

THE ORGANIZATION OF DATA

The list of test scores in a teacher’s grade book provides an example of unorga-
nized data. Because the usual method of listing is alphabetical, the scores  are dif-
ficult to interpret without some other type of organization.

Alberts, James 60
B r o w n ,  J o h n  7 8
D a v i s ,  M a r y  9 0
Smith,  Helen 70
Williams. Paul 88
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TABLE 10.2 Scores of 37 Students on a
Semester Algebra Test

98 85 80 76 67
97 85 80 76 67
95 85 80 75 64
93 84 80 73 60
90 82 78 72 57
88 82 78 70
87 82 78 70
87 80 77 70

The Ordered Array or Set
Arranging the same scores in descending order of magnitude produces what is
known as an ordered army.

90
8 8
7 8
7 0
6 0

The ordered array provides a more  convenient arrangement. The highest score
(90), the lowest score (60), and the middle score (78) are easily identified. Thus, the
range (the difference between the highest and lowest scores, plus one) can easily
be determined.

Illustrated in Table 10.2 is a data arrangement of 37 students’ scmes on an alge-
bra test in ordered array form.

Grouped Data Distributions

Data are often more clearly presented when scmes  are grouped and a frequency col-
umn is included. Data can be presented in frequency tables (see Table 10.3 on page
342) with different class intervals, depending on the number and range  of the scores.

A score interval with an odd number of units may be preferable because its
midpoint is a whole number rather than a fraction. Because all scores are assumed
to fall at the midpoint of the interval (for purposes of computing the mean), the
computation is less complicated:

Even interval of four: 8 9 10 11 (midpoint 9.5)
Odd interval of five: 8 9 10 11 12 (midpoint 10)

There is no rule that rigidly determines the proper score interval, and inter-
vals of 10 are frequently used.
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TABLE 10.3 F33~Ieseon  Algebra Test Grouped in Intervals

Score Interval Tallies Frequency (f) Includes

96-100 11 2 (96 97 98 99 100)
91-95 11 2 (91 92 93 94 95)
86-90 1111 4 etc.
81-85 I*n  11 7
76-80 L&EM1 11
71-75 111 3
66-70 l&B 5
61-65 1 1
56-60 11 2

N=37

STATKTICAL MEASURES

Several basic types of statistical measures are appropriate in describing and ana-
lyzing data in a meaningful way:

Measures of central tendency OY averages

MEIll
Median
Mode

Measures of spread or dispersion

Range
Variance
Standard deviation

Measures of relative position

Standard scores
Percentile rank
Percentile score

Measures of relafionship

Coefficient of correlation

Measures of Cenfral Tendency

Nonstatisticians use averages  to describe the characteristics of groups in a general
way.  The climate of an area is often noted by average temperature or average amount
of rainfall. We may describe students by grade-point averages or by average age.
Socioeconomic status of groups is indicated by average income, and the return  on
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an investment portfolio may be judged in terms of average income return.  But to the
statistician the term average is unsatisfactory, for there are a number of types of aver-
ages, only one of which may be appropriate to use in describing given characteris-
tics of a group. Of the many averages that may be used, three have been selected as
most useful  in educational research: the mean,  the median, and the mode.

The Mean (x)
The mean of a distribution is commonly understood as the arithmetic average. The
term grade-point nvemge, familiar to students, is a mean value. It is computed by
dividing the sum of all the scores by the number of scores. In formula form

x=“x
N

where x = mean
x= sumof
X = scores in a distribution
N = number of scores

N=6
x = 2116  = 3.50

The mean is probably the most useful of all statistical measures, for, in addi-
tion to the information that it provides, it is the base from which many other
important measures are computed.

Appendix B contains a data set from a population of 100 children (one set in
Microsoft Excel and one in SPSS format). The data for each child includes an ID
number, the method of teaching reading that was received, the gender, the cate-
gory of special education in which the child has been classified (LD = learning
disabilities; BD = behavior disordered; MR = mild mental retardation), and both
pre and posttest  scores. The reader may wish to randomly select a sample of 25
children (or 15 children if recommended by the professor) from the appendix for
use in a variety of calculations throughout this chapter. Now calculate the mean
for this sample of 25 children’s IQ. The mean of the population given in the appen-
dix is 86.12. How does the sample mean compare to the population mean?



The Median (Md)
The median is a point (not necessarily a score) in an array, above and below which
one-half of the scores  fall. It is a measure of position rather than of magnitude and
is frequently found by inspection rather than by calculation. When there are an
odd number of untied scores, the median is the middle score, as in the example
below:

7
6 3 scores above
5
4 - median
3
2 3 scores  below

When there are an even number of untied scores, the median is the midpoint
between the two middle scores, as in the example below:

6
5
4

3 scores  above

-median = 3.50
3
2
1

If the data include tied scores at the median point, interpolation within the tied
scores is necessary. Each integer would represent the interval from halfway between
it and the next lower score to halfway between it and the next higher score. When
ties occur at the midpoint of a set of scores, this interval is portioned out into the
number of tied scores and the midpoint or median is found. Consider the set of
scores in Figure 10.1.

Because there are four scores  tied (75), the interval from 74.5 to 75.5 is divided
into four equal parts. Each of the scores is then considered to occupy 0.25 of the
interval, and the median is calculated.

One purpose of the mean and the median is to represent the “typical” score;
most of the time it is satisfactory to use the mean for this purpose. However, when
the distribution of scores is such that most scores  are at one end and relatively few
are at the other (known as a skewed distn’bution),  the median is preferable because
it is not influenced by extreme scores  at either end of the distribution. In the fol-
lowing examples the medians are identical. However, the mean of Group A is 4,
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70
73
74

74.50 - lower limit
0.25 F 75

74.75 - median
0.25 75

75.25

75.50 c- upper limit
80

FIGURE 10.1 Median Calculation

and the mean of Group B is 10. The mean and median are both representative of
Group A, but the median better represents the “typical” sccre of Group B.

Group A Group B

7 50
6 6
5 5
4-Md 4-Md
3 3
2 2
1 0

Thus, in skewed data distributions the median is a more  realistic measure of
central tendency than the mean.

In a small school with five faculty members, the salaries might be

Teacher A 536,000
B 22,000
C 21,400 Median
D 21,000
E 19,600

Total Salaries = $120,000
FE  120,000

5 = 24,000

The average salary of the group is represented with a different emphasis by
the median salary ($21,400) than by the mean salary ($24,000),  which is substantially
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higher than that of four of the five faculty members. Thus, we see again that
the median is less sensitive than the mean to extreme values at either end of a
distribution.

Using the same 25 children selected from Appendix B to calculate a mean, now
calculate the median. How do the two compare? Which is more useful? The
median for the population of 100 children is 89.0 (5 scores of 89 fall below the mid-
point and 5 above it). How does the sample median compare?

The Mode (MO)

6
5
4
4 I

Mode

3
2
1

The mode is the score that occurs most frequently in a distribution. It is located
by inspection rather than by computation. In grouped data distributions the mode
is assumed to be the midscore of the interval in which the greatest frequency
occurs.

For example, if the modal age of fifth-grade children is 10 years, it follows that
there are more  10.year-old fifth-graders than any other age. Or a menswear sales-
man might verify the fact that there are more sales of size 40 suits than of any other
size; consequently, a larger number of size 40 suits are ordered and stocked, size
40 being the mode.

In some distributions there may be more than one mode. A two-mode distri-
bution is referred to as bimodal, nmre  than two, multimodal. If the number of auto
accidents on the streets of a city were tabulated by hours of occurrence, it is likely
that two modal periods would become apparent-between 7 A.M. and 8 A.M. and
between 5 P.M. and 6 P.M., the hours when traffic to and from stores and offices is
heaviest and when drivers are in the greatest hurry. In a normal distribution of
data there is one mode, and it falls at the midpoint, just as the mean and median
do. In some unusual distributions, however, the mode may fall at some other
point. When the mode or modes reveal such unusual behavior, they do not serve
as measures of central tendency, but they do reveal useful information about the
nature of the distribution.

Using the data set in Appendix B, the mode of the categories of disability can
be determined. Because 50 of the 100 children have learning disabilities (28 have
behavior disorders and 22 have mental retardation) as their classification, this is
the mode. Now using the data from the 25 children selected for the mean and
median calculations above, determine the mode of the sample for disability cate-
gory. Now determine the mode for IQ of the sample. The mode for the population
is 89. How does the sample mode compare?



Chapter 10 /Descriptive Data Analysis 347

Measures of Spread or Dispersion

Measures of central tendency describe location along an ordered scale. There are
characteristics of data distributions calling for additional types of statistical analy-
sis. The scores in Table 10.4 were made by a group of students on two different
tests, one in reading and one in arithmetic.

The mean and the median are identical for both tests. It is apparent that aver-
ages do not fully describe the differences in achievement between students’ scores
on the two tests. To contrast their performance, it is necessary to use a measure of
score spread or dispersion. The arithmetic test scores are homogeneous, with lit-
tle difference between adjacent scores. The reading test sccres  are decidedly het-
erogeneous, with performances ranging from superior to very poor.

The range, the simplest measure of dispersion, is the difference between the high-
est and lowest scores plus one. For reading scores the range is 41(95  - 55 + 1). For
arithmetic scores  the range is 9 (79 - 71 + 1).

The Deviation from the Mean (x)
A score expressed as its distance from the mean is called a deviation saw. Its for-
mula is

x = ( X - x ,

TABLE 10.4 Sample Data

Reading

Pupil SC0t-Z
Academic
Grade

Arithmetic

Academic
Score Grade

Arthur
Betty
John
K&h&IV2
Charles
Larly
DOma
Edward
Maw

95 A

z
A
B

8075 :
70 C
65 D
60 D
55 F

ZX = 675
a=9

76
78 f
77 C
71 C
7s
79 s
73 C
72 C
74 C

ZX = 675

N=9

qL75 x=2?+=,

Md = 75 A4A = 75
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If the score falls above the mean, the deviation score is positive (+); if it falls
below the mean, the deviation score is negative (-),

Using the same example, compare two sets of scores:

Reading Arithmetic

X (X-Z X (X-x,
95
90
85
80
75
70
65
60

ss
EX=675

N=9
x=75

+20 76 +1
+15 78 +3
+10 77 +2
+5 71 - 4

0 75 0
- 5 79 +4
- 1 0 73 - 2
-15 72 - 3
-2 74 -1

xx=0 2X=675 xx=0
N=9

x=75

It is interesting to note that the sum of the score deviations from the mean
equals zero.

z (X-x)=0
x:x=0

In fact, we can give an alternative definition of the mean: The mean is that
value in a distribution around which the sum of the deviation score equals zero.

The Variance (d)
The sum of the squared deviations from the mean, divided by N, is known as the
variance. We have noted that the sum of the deviations from the mean equals zero
(Z x = 0). From a mathematical point of view it would be impossible to find a mean
value to describe these deviations (unless the signs were ignored). Squaring each
deviation score yields a positive score. The scores can then be summed, divided
by N, and the mean of the squared deviations computed. The variance formula is

Thus, the variance is a value that describes how all of the scores in a distribu-
tion are dispersed or spread about the mean. This value is very useful in describ-
ing the characteristics of a distribution and will be employed in a number of very
important statistical tests. However, because all of the deviations from the mean
have been squared to find the variance, it is much too large to represent the spread
of sccres.
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The Standard Deviation (u)
The standard deviation, the square root of the variance, is most frequently used as
a measure of spread or dispersion of scores in a distribution. The formula for stan-
dard deviation of a population is

In the following example, using the reading XOES from Table 10.4, the vari-
ance and the standard deviation are computed.

95 +20 1400
90 +15 +225
85 +10 +100
80 +5 +25
75 0 0
70 - 5 +25
65 -10 +100
60 - 1 5 +225
55 - 2 0 +4op

x$=1500

Variance C? = 150019  = 166.67

Standard deviation r~ = \/1500/9  = p = 12.91

As can clearly be seen, a variance of 166.67 cannot represent, for most pur-
poses, a spread of scores with a total range of only 41, but the standard deviation
of 12.91 does make sense.

Although the deviation approach (just used in the previous calculation) pro-
vides a clear example of the meaning of variance and standard deviation, in actual
practice the deviation method can be awkward to use in computing the variances
or standard deviations for a large number of scores. A less complicated method,
which results in the same answer, uses  the raw S~CIES  instead of the deviation
scores. The number values tend to be large, but the use of a calculator facilitates
the computation.

Standard deviation o = N’x*G (“*
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The following example demonstrates the process of computation, using the
raw score method:

95 9025
90 8100
85 7225
80 6400
75 5625
70
65
60
55

XX=675

4900
4225
3600
3025

2 X2 = 52,125
N=9

c2 = 9(51,125) (675)2  469 ,125  - 4 5 5 , 6 2 4_
9 (9) 81

$ = %I!!!? = 166.67
81

c = 166.67 = 12.91

Standard Deviation for Samples (S)
The variance and standard deviation for a population have just been described.
Because most of the time researchers use samples selected from the population, it
is necessary to introduce the formulas for the variance S2 and the standard devia-
tion (S) of a sample. The sample formulas differ only slightly from the population
formulas. As will be seen, instead of dividing by N in the deviation formula and by
iVz  in the raw score formula, the sample formulas divide by n - 1 and n(n - l),
respectively.’ This is done to correct for the probability that the smaller the sample
the less likely it is that extreme scores will be included. Thus the formula for g, if
used with a sample, would underestimate the standard deviation of the population
because a randomly selected sample would probably not include the most extreme
scores that exist in the population simply because there are so few of them. Divid-
ing by n - 1 or n(n ~ 1) corrects for this bias, more or less depending upon the sam-
ple’s size. This makes the standard deviation of the sample more  representative of
the population. In a small sample, say n = 5, the correction is rather large, dividing
by 4 instead of 5-a reduction of 20% in the denominator. In a large sample, say
n = 100, the correction is insignificant, dividing by 99 instead of 100-a reduction
of 1% in the denominator. Again, this difference in the percent correction is due to
the fact that smaller the sample the less likely are extreme scores to be represented.

We should note that these formulas for the standard deviation of the sample
are actually inferential statistics and would normally be in the next chapter. How-
ever, because these are the formulas used to describe a sample and because sam-
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ples are what one normally has to calculate the standard deviation, we believe this
is the better place for them.

The two formulas for sample standard deviation with the deviation and the
raw score methods of computation, respectively, are

No doubt the reader can see that the only changes are in the denominator. Thus,
if we substitute n(n - 1) for N* and calculate S* and S using the data from page 350,
we would find the following:

Sz = 9 (52,125) - (675)*  = 469,125 - 455,625
9 (8) 72

S=J18%50=13.69

These results are quite a change from n2 = 166.67 (change of +20.83) and
o = 12.91 (change of +.78). These relatively large differences from the population
formula to the sample formula are due to the small sample size (n = 9), which
made a relatively large correction necessary. The correction for calculating the
variance and standard deviation is important because, unless the loss of a degree
of freedom (discussed in Chapter 11) is considered, the calculated sample variance
or standard deviation is likely to underestimate the population variance or stan-
dard deviation. This is true because the mean of the squared deviations from the
mean of any distribution is the smallest possible value and probably would be
smaller than the mean of the squared deviation from any other point in the distri-
bution. Because the mean of the sample is not likely to be identical to the popula-
tion mean (because of sampling error), the use of N - 1 (the number of degrees of
freedom) rather than N in the denominator tends to correct for this underestima-
tion of the population variance or standard deviation.

The strength of a prediction or the accuracy of an inferred value increases as the
number of independent observations (sample size) is increased. Because large sam-
ples may be biased, sample size is not the only important determinant, but if unbi-
ased samples are selected randomly from a population, large samples will provide
a more  accurate basis than will smaller samples for inferring population values.

The standard deviation for IQ of the population in Appendix B is 11.55, using the
formula for the population (it would be 11.61 if the sample formula were used). The
reader should calculate the standard deviation (using the formula for a sample) for
the sample. How does it compare with the standard deviation of this population?

The standard deviation is a very useful device for comparing characteristics
that may be quite different or may be expressed in different units of measurement.
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The following discussion shows that when the normality of distributions can be
assumed it is possible to compare the proverbial apples and oranges. The standard
deviation is independent of the magnitude of the mean and provides a camnon
unit of measurement. To use a rather farfetched example, imagine a man whose
height is one standard deviation below the mean and whose weight is one standard
deviation above the mean. Because we assume that there is a normal relationship
between height and weight (or that both characteristics are normally distributed),
a picture emerges of a short, overweight individual. His height, expressed in inches,
is in the lowest 16% of the population, and his weight, expressed in pounds, is in the
highest 16%. In this chapter only the standard deviation of a population is discussed.

But before using the standard deviation to describe status or position in a group
is discussed, the normal distribution needs to be examined.

NORMAL DISTRIBUTION

The earliest mathematical analysis of the theory of probability dates to the 18th
century. Abraham DeMoivre,  a French mathematician, discovered that a mathe-
matical relationship explained the probabilities associated with various games of
chance. He developed the equation and the graphic pattern that describes it. Dur-
ing the 19th century a French astronomer, LaPlace,  and a German mathematician,
Gauss, independently arrived at the same principle and applied it more broadly
to areas of measurement in the physical sciences. From the limited applications
made by these early mathematicians and astronomers, the theory of probability,
or the curve of distribution of error, has been applied to data gathered in the areas
of biology, psychology, sociology, and other sciences. The theory describes the
fluctuations of chance errc~rs  of observation and measurement. It is necessary to
understand the theory of probability and the nature of the curve of normal distri-
bution to comprehend many important statistical concepts, particularly in the area
of standard scores, the theory of sampling, and inferential statistics.

We should keep in mind that “the normal distribution does not actually exist.
It is not a fact of nature. Rather, it is a mathematical model-an idealization-that
can be used to represent data collected in behavioral research” (Shavelson,  1996,
p. 120). The law of probability and the normal curve that illustrates it are based on
the law of chance or the probable occurrence of certain events. When any body of
observations conforms to this mathematical form, it can be represented by a bell-
shaped curve with definite characteristics (see Figure 10.2).

1. The curve is symmetrical around its vertical axis-50% of the scores are above
the mean and 50% below the mean.

2. The mean, median, and the mode of the distribution have the same value.
3. The terms cluster around the center-most scores are near the mean, median,

and mode with fewer scores as the score is further from the center.
4. The curve has no boundaries in either direction, for the curve never touches

the base line, no matter how far it is extended. The curve is a curve of proba-
bility, not of certainty.
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Vertical Axis

Mean
Median
Mode

FIGURE 10.2 The Normal Curve

5. One way to think of the normal curve (or the nonnormal curves described
shortly) is to view it “as a solid geometric figure made up of all the subjects and
their different scores” (Heirnan,  1996, p. 53). That is, the curve is a smoothed,
curved version of a bar graph that represents each possible score and the nm-
ber of persons who got that score.

Researchers often consider one standard deviation from the mean to be a par-
ticularly important point on the normal curve. This is for both a practical and a
mathematical reason. The practical reason is that this results in approximately 68%
(slightly over two-thirds) of the population falling between one standard devia-
tion above and one standard deviation below the mean. Perhaps more important,
this is the point at which the curve changes from a downward convex shape to an
upward convex shape. Thus, mathematically, this is the point at which the direc-
tion of the curve changes. As will be discussed later, +1.96  standard deviations
from the mean will result in 95% of the population. This is another critical point
in the curve, which is often rounded to 2 standard deviations from the mean.

The operation of chance prevails in the tossing of coins or dice. It is believed that
many human characteristics respond to the influence of chance. For example, if cer-
tain limits of age, race, and gender were kept constant, such measures as height,
weight, intelligence, and longevity would approximate the normal distribution pat-
tern. But the normal distribution does not appear in data based on observations of
samples. There just are not enough observations. The normal distribution is based
on an infinite number of observations beyond the capability of any observer; thus,
there is usually some observed deviation from the symmetrical pattern. But for pur-
poses of statistical analysis, it is assumed that many characteristics do conform to
this mathematical form within certain limits, providing a convenient reference.

The concept of measured intelligence is based on the assumption that intelli-
gence is normally distributed throughout limited segments of the population. Tests
are so constructed (standardized) that scores are normally distributed in the large
group that is used for the determination of norms or standards. Insurance com-
panies determine their premium rates by the application of the curve of probability
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Basing their expectation on observations of past experience, they can estimate the
probabilities of survival of a man from age 45 to 46. They do not purport to pre-
diet the survival of a particular individual, but from a large group they can pm-
diet the mortality rate of all insured risks.

The total area under the normal curve may be considered to approach 100%
probability Interpreted in terms of standard deviations, areas between the mean
and the various standard deviations from the mean under the curve show these
percentage relationships (see Figure 10.3).

Note the graphic conformation of the characteristics of the normal curve:

1. It is symmetrical-the percentage of frequencies is the same for equal inter-
vals below or above the mean.

2. The terms a scores “cluster” or “crowd around the mean”-note how the per-
centages in a given standard deviation are greatest around the mean and de-
crease as one moves away from the mean.
x to il.002 34.13%
il.00 to k2.002 13.59%
22.00 to *3.002 2.15%

3. The curve is highest at the mean-the mean, median, and mode have the same
V&E!.

4. The curve has no boundaries-a small fraction of 1% of the space falls outside
of *3.00 standard deviations from the mean.

The normal curve is a curve that also describes probabilities. For example, if
height is normally distributed for a given segment of the population, the chances are

.:‘;i;34.13L3~%u
4 4 4 4 4 4 4 4

FIGURE 10.3 Percentage of Frequencies in a Normal
Distribution Falling within a Range of a
Given Number of Standard Deviations
from the Mean
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34.‘3 that a person selected at random will be between the mean and one standard-G-
deviation above the mean in height, and loo%.I3  that the person selected will be between
the mean and one standard deviation below the mean in height--or  w that the
selected person will be within one standard deviation (above or below) the mean in
height. Another interpretation is that 68.26% of this population segment will be
between the mean and one standard deviation above or below the mean in height.

An example may help the reader understand this concept. IQ (intelligence
quotient) is assumed to be normally distributed. The Wechsler  Intelligence Scale
for Children-Revised (WISC-R) has a mean of 100 and a standard deviation of 15.
Thus, a WISC-R IQ score that is one standard deviation above the mean is 115, and
a score of 85 is one standard deviation below the mean. From this information it
is known that approximately 68% of the population should have WISC-R scores
between 85 and 115.

For practical purposes the curve is usually extended to t3 standard deviations
from the mean (+32).  Most events or occurrences (or probabilities) will fall between
these limits. The probability is e that these limits account for observed or pre-
dicted occurrences. This statement does not suggest that events or measures could
not fall mire than three standard deviations from the mean but that the likelihood
would be too small to consider when making predictions or estimates based on
probability Statisticians deal with probabilities, not certainty, and there is always
a degree of reservation in making any prediction. Statisticians deal with the prob-
abilities that cover the normal course of events, not the events that are outside the
normal range of experience.

Nonnormal Disfribufions

As mentioned earlier in the discussions of parametric and nonparametric data and
the relative usefulness of the mean and median, not all distributions, particularly
of sample data, are identical to or even close to a normal curve. There are two other
types of distiibutions  that can occur: skewed and bimodal.  In skewed distributions
the majority of scores are near the high or low end of the range with relatively few
scores at the other end. The distribution is considered skewed in the direction of
the tail (fewest scores). In Figure 10.4 on page 356 distribution A is skewed posi-
tively, and distribution B is skewed negatively. Skewed distributions can be
caused by a number of factors, including a test that is too easy or hard or an atyp
ical sample (very bright or very low intelligence).

Bimodal distributions have two modes (see distribution C in Figure 10.4) rather
than the single mode of normal or skewed distributions. This often results from a
sample that consists of persons from two populations. For instance, the height of
American adults would be bimodally distributed, females clustering around a
mode of about 5 feet 4 inches and males around a mode of about 5 feet 10 inches.

Interpreting the Normal Probability Distribution

When scores are normally or near normally distributed, a normal probability table
is useful. The values presented in the normal probability table in Appendix B are
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FIGURE 10.4 Nonnormal  Distributions

critical because they provide data for normal distributions that may be interpreted
in the following ways:

1. The percentage of total space included between the mean and a given stan-
dard deviation (z) distance from the mean

2. The percentage of cases, or the number when N is known, that fall between
the mean and a given standard deviation (z) distance from the mean

3. The probability that an event will occur between the mean and a given stan-
dard deviation (z) distance from the mean

z = number of standard deviations from the mean
x - xz=-

0

Figure 10.5 demonstrates how the area under the normal curve can be divided. In
a normal distribution the following characteristics hold true:

1. The space included between the mean and +l.OOz  is .3413 of the total area
under the curve.

2. The percentage of cases that fall between the mean and +l.OOz  is .3413.
3. The probability of an event’s occurring (observation) between the mean and

+l.OOz  is .3413.
4. The distribution is divided into two equal parts, one half above the mean and

the other half below the mean.
5. Because one half of the curve is above the mean and 3413  of the total area is

between the mean and +l.OOz, the area of the curve that is above + 1.00~  is .1587.

Because the normal probability curve is symmetrical, the shape of the right
side (above the mean) is identical to the shape of the left side (below the mean).
Because the values for each side of the curve are identical, only one set of values
is presented in the probability table, expressed to one-hundredth of a sigma (stan-
dard deviation) unit.
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x +1.002

FIGURE 10.5 The Space Included Under the Normal
Curve Between the Mean and +l.OOz

The normal probability table in Appendix C provides the proportion of the
curve that is between the mean and a given sigma (z) value. The remainder of that
half of the curve  is beyond the sigma value.

Probability

Above the mean .5000 50/100
Below the mean .5000 50/100
Above Cl.962 .5000 - .4750 = .0250 2.5/100
Below +.32z .5000 + .1255 = .6255 62.5/100
Below -.322 .5000 - .1255 = .3745 37.5/100

Practical Applications of the Normal Curve

In the field of educational research the normal curve has a number of practical
applications:

1. To calculate the percentile rank of scores in a normal distribution.
2. To normalize a frequency distribution, an important process in standardizing

a psychological test or inventory.
3. To test the significance of observed measures in experiments, relating them to

the chance fluctuations or errors inherent in the process of sampling and gen-
eralizing about populations from which the samples are drawn.

Measures of Relative Position: Standard Scores

Standard seems  provide a method of expressing any score in a distribution in
terms of its distance from the mean in standard deviation units. The utility of this
conversion of a raw score to a standard score will become clear as each type is
introduced and illustrated. Three types of standard scores are considered.



1. Z score (Sigma)
2. T sccre (r)
3. College board score (Z,)

Remember that the distribution is assumed to be normal when using any type
of standard sax-e.

The Z Score (Sigma)
In describing a score in a distribution, its deviation from the mean-expressed in
standard deviation units-is often more  meaningful than the score itself. The unit
of measurement is the standard deviation.

where X = raw score
x = mean
cr = standard deviation
x = (X - a score deviation from the mean

Examvle  A Example B

X=76 X=67
X=82 z=62
0=4 a=5

76-82_ = + = -1.50 z= 67 = L =
4 5 5

+l,OO

The raw score  of 76 in Example A may be expressed as a Z score of ~ 1.50, indi-
cating that 76 is 1.5 standard deviations below the mean. The score of 67 in Exam-
ple B may be expressed as a sigma score of +l.OO,  indicating that 67 is one standard
deviation above the mean.

In comparing or averaging scores on distributions where total points may dif-
fer, the researcher using raw scores may create a false impression of a basis for
comparison. A Z score makes possible a realistic comparison of scores and may
provide a basis for equal weighting of the scores. On the sigma scale the mean of
any distribution is converted to’zero, and the standard deviation is equal to 1.

For example, a teacher wishes to determine a student’s equally weighted aver-
age (mean) achievement on an algebra test and on an English test.

Subject Test Score Mean
Highest
Possible Score

Standard
Deviation

Algebra 40 47 60 5
English 84 110 180 20
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It is apparent that the mean of the two raw test scores would not provide a valid
summary of the student’s perfommnce,  for the mean would be weighted over-
whelmingly in favor of the English test score. The conversion of each test score to
a sigma score makes them equally weighted and comparable, for both test scores
have been expressed on a scale with  a mean of zero  and a standard deviation of one.

z- x-x
r?

Algebra z score = 40 - 47 = -7 = -1.405 5

English z Scot = 84 iollo - 2 6= - = -1.30
20

On an equally weighted basis, the performance of the student was fairly con-
sistent: 1.40 standard deviations below the mean in algebra and 1.30 standard
deviations below the mean in English.

Because the normal probability table describes the percentage of area lying
between the mean and successive deviation units under the normal curve (see
Appendix C), the use of sigma scores has many other useful applications to hypoth-
esis testing, determination of percentile ranks, and probability judgments.

The reader may wish to select one score from the sample of 25 children selected
earlier and calculate the z score for that person in relation to the sample. The pop-
ulation mean (86.12) and standard deviation (11.55) in the formula could then be
used to calculate tlw z for the same child. How do these  two z scoi-es compare?

The T Score (T)

T=50+10  (@;a o r  50+102

Although the z score is most frequently used, it is sometimes awkward to have
negatives or scores with decimals. Therefore, another version of a standard score,
the T score, has been devised to avoid some confusion resulting from negative z
scores (below the mean) and also to eliminate decimal values.

Multiplying the z score by 10 and adding 50 results in a scale of positive whole
number values. Using the scores in the previous example, T = 50 + 102:

Algebra T = 50 + lO(-1.40)  = 50 + (-14) = 36
English T = 50 + lO(-1.30)  = 50 + (-13) = 37

T scores are always rounded to the nearest whole number. A z score of +1.27
would be converted to a T score of 63.

T = 50 + 10(+1.27)  = 50 + (+12.70)  = 62.70 = 63

Convert the z scores just calculated for the person selected from the sample
into T scores.
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The College Board Score (Z,)

The College Entrance Examination Board and several other testing agencies use
another conversion that provides a more  precise measure by spreading out the
scale (see Figure 10.6).

2, = 500 + 100 (X ; 3 = 500 + 1002

The mean of this scale is 500.
The standard deviation is 100.
The range is 200-800.

Sfanines

A stanine is a standard score that divides the normal curve into nine parts, thus
the term stanine from sta of standard and nine. The 2nd to 8th stanines are each
equal to one-half standard deviation unit. Thus, stanine 5 includes the center of
the curve and goes one-quarter (.25)  standard deviations above and below the
mean. Stanine 6 goes from the top of stanine 5 to .75 standard deviations above
the mean, whereas &nine  4 goes from the bottom of stanine 5 to .75 standard
deviations below the mean and so on. Stanine 1 encompasses all scores  below sta-
nine 2, and stanine 9 encompasses all scores above stanine 8. Figure 10.6 demon-
strates the &nine  distribution and compares it to the other standard scores.

Percentile Rank

Although the percentile rank is not usually considered a standard score, it is perti-
nent to this discussion. It is often useful to describe a score in relation to other scores;
the percentile rank is the point in the distribution below which a given percentage
of scores  fall. If the 80th percentile rank is a score of 65,80%  of the scores fall below
65. The median is the 50th percentile rank, for 50% of the scores fall below it.

When N is small, the definition needs an added refinement. To be completely
accurate, the percentile rank is the score in the distribution below which a given
percentage of the scores falls, plus one half the percentage of space occupied by
the given score.

SCOWS
50
47
43
39
30

On inspection it is apparent that 43 is the median, or occupies the 50th per-
centile rank. Fifty % of the scores should fall below it, but in fact only two out of
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Percent of ca*es
under portions of
the normal curve

P

2 0 3 0 4 0 5 0 6 0 7 0 8 0
CEEBscores I I I I I I / I I I / I I I I I

200 300 4 0 0 500 600 700 800
NCE Scores I I I I I I I I I I I I I

1 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 9 9
I I I I I I I I I

Stanines
Percent in Swine

I
Wechsler Scales ,

SUMeStS 1 I I
1 4 7 10 13 16 19

Deviation  I& I I I
015 5 5 7 0 8 5 100 115 130 145

Otis - Lennon ,
016 5 2 6 8 8 4 100 116 132 148

The Normal Curve, Percentiles, and Selected Standard Scores

FIGURE 10.6 Illustration of Various Standard Score Scales
(Test Service Notebook 148, The Psychological Corporation, NY.)

five scores fall below 43. That would indicate 43 has a percentile rank of 40. But
by adding the phrase “plus one half the percentage of space occupied by the
score,” the calculation is reconciled:

40% of scores fall below 43; each score occupies 20% of the total space
40% + 10% = 50 (true percentile rank)
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When N is large, this qualification is unimportant because percentile ranks are
rounded to the nearest whole number, ranging from the highest percentile rank of
99 to the lowest of zero.

High schools frequently rate their graduating seniors in terms of rank in class.
Because schools vary so much in size, colleges find these rankings of limited value
unless they are converted to some common basis for comparison. The percentile
rank provides this basis by converting class rank into a percentile rank.

Percentile rank = 100 - (1OORK  - 50)
N

where RK = rank from the top

Jones ranks 27th in his senior class of 139 students. Twenty-six students rank
above him, 112 below him. His percentile rank is

100 - (2700  - 50) = 100 - 19 = 81

139
In this formula 50 is subtracted from 1OOXK  to account for half the space occu-

pied by the individual’s score. What is the percentile rank of the person you selected
in order to calculate z and T scores?

MEASURES OF RELATIONSHIP

Correlation is the relationship between two or more  paired variables or two or
more sets of data. The degree of relationship is measured and represented by the
coefficient of correlation. This coefficient may be identified by either the letter I’,
the Greek letter rho ( p), or other symbols, depending on the data distiibutions  and
the way the coefficient has been calculated.

Students who have high intelligence quotients tend to receive high scores in
mathematics tests, whereas those with low IQs tend to score low. When this type
of relationship is obtained, the factors of measured intelligence and scores on math-
ematics tests are said to be positively correlated.

Sometimes variables are negatively correlated when a large amount of one
variable is associated with a small amount of the other. As one increases, the other
tends to decrease.

When the relationship between two sets of variables is a pure chance rela-
tionship, we say that there is no correlation.

These pairs of variables are usually positively correlated: As one increases, the
other tends to increase.

1. Intelligence Academic achievement
2. Productivity per acre Value of farm land
3. Height Shoe size
4. Family income Value of family home
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These variables are usually negatively correlated: As one increases, the other
tends to decrease.

1. Academic achievement Hours per week of TV watching
2. Total corn production Price per bushel
3. Time spent in practice Number of typing errors
4. Age of an automobile Trade-in value

There are other traits that probably have no correlation

1. Body weight Intelligence
2. Shoe size Monthly salary

The degree of linear correlation can be represented quantitatively by the coef-
ficient of correlation. A perfect positive correlation is +l.OO. A perfect negative COP
relation is -1.00. A complete lack of relationship is zero (0). Rarely, if ever, are
perfect coefficients of correlations of +l.OO or -1.00 encountered, particularly in
relating human traits. Although some relationships tend to appear fairly consis-
tently, there are variations or exceptions that reduce the measured coefficient from
either a -1.00 or a +l.OO toward zero.

Adefinition of perfect positive correlation specifies that for every unit increase
in one variable there is a proportional unit increase in the other. The perfect neg.
ative  correlation specifies that for every unit increase in one variable there is a pro-
portional unit decrease in the other. That there can be no exceptions explains why
coefficients of correlation of +l.OO  or -1.00 are not encountered in relating human
traits. The sign of the coefficient indicates the direction of the relationship, and the
numerical value its strength.

The Scattergram and Linear Regression Line
When the relationship between two variables is plotted graphically, paired vari-
able values are plotted against each other on the X and Y axis.

The line drawn through, or near, the coordinate points is known as the “lime
of best fit,” or the regression line. On this line the sum of the deviations of all the
coordinate points has the smallest possible value. As the coefficient approaches
zero (0), the coordinate points fall further from the regression line (see Figure 10.7
on page 364 for examples of different correlations’ scattergrams).

When the coefficient of correlation is either +l.OO  or -1.00, all of the coordi-
nate points fall on the regression line, indicating that, when Y = +l.OO,  for every
increase in X there is a proportional increase in Y; and when Y = -1.00, for
every increase in X there is a proportional decrease in Y. There are no individual
exceptions. If we know a person’s score on one measure, we can determine his oi-
her exact score on the other measure.

The slope of the regression line, or line of best fit, is not  determined by guess
or estimation but by a geometric process that will be described later.

There are actually two regression lines. When I = +l.OO or ~1.00,  the lines are
superimposed and appear as one line. As Y approaches zero, the lines separate
further.
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FIGURE 10.7 Scatter Diagrams Illustrating Different
Coefficients of Correlation

Only one of the regression lines is described in this discussion, the Y on X (or
Y from x) lie.  It is used to predict unknown Y values from known X values. The
X values are known as the predictor variable, and the Y values, the predicted vari-
able. The other regression line (not described here) would be used to predict X
from Y.

P/otting the Shpe of the Regression Line
The slope of the regression (Y from x) line is a geometric representation of the
coefficient of correlation and is expressed as a ratio of the magnitude of the rise (if
Y is +) to the run, or as a ratio of thefall (if Y is -) to the run, expressed in standard
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deviation units. The geometric relationship between the two legs of the right tri-
angle  determines the slope of the hypotenuse, or the regression line.

For example, if Y = +.60, for every sigma unit increase (run) in X, there is a .60
sigma unit increase (rise) in Y.

1 .ooz,

If Y = -.60, for every sigma unit increase (run) in X, there is a .60  sigma unit
decrease (fall) in Y.

1 .ooz,

Because all regression lines pass through the intersection of the mean  of X and
the mean of Y lines, only one other point is necessary to determine the slope. By
measuring one standard deviation of the X distribution on the X axis and a .60
standard deviation of the Y distribution on the Y axis, the second point is estab-
lished (see Figures 10.8 and 10.9 on page 366).

The regression line (r)  involves one awkward feature: all values must be
expressed in sigma scores (z) or standard deviation units. It would be more  prac-
tical to use actual scores to determine the slope of the regression line. This can be
done by converting to a slope known as b. The slope of the b regression line Y on
X is determined by the formula
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Slope = +.f30r

x
F I G U R E  1 0 . 8 A Positive Regression Line, Y = +.60

For example, if Y = + .60

and cry=6

vx = 5

b=+.60g+=+.72

Thus an Y of + .60  becomes b = + .72.  Now the ratio run has another value and
indicates a different slope lie (Figure 10.10).

Pearson’s Product-Moment Coefficient of Correlation (r)

The most often used and most precise coefficient of correlation is known as the
Pearson’s Product-Moment coefficient (ri.  This coefficient may be calculated by

1.002,(run)
v

I .60z,(fall)

Slope  = -.60r

F I G U R E  1 0 . 9 A Negative Regression Line, Y = -.60
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=yj .60zy pqzy
1 .ooz, 1.00x

(Sigma Scores) (Raw Scores)

FIGURE 10.10 Two Regression Lines, r and b
An I of +.60 is converted to a b of
+.72  by the formula

Converting  the raw sccws  to sigma scores and finding the mean value of their
cross-products.

I= = (52 (3)
N

4 34 (Z,)(ZJ

+1.50 +1.20
+2.00

+1.x0
+1.04

-.75
+2.08

p.90
+.20

+.68
+.70

-1.00
+.14

+ 20
-.40

-20
+.30

+1.40
-.12

+.70
+ .55

+.9s
+.64

-.04
+.35

+.10
m.10

-.oo
c.30 Q

2 (2x) (zy) = 5.68

+ ,568
_

If most of the negative values of X are associated with negative z values  of y,
and positive V&VS of X with positive values of Y, the correlation coefficient will
be positive. If most of the paired values are of opposite signs,  the coefficient will
be negative.

positive correlation (+)(+) = + high  on X, hi& on Y
(-)(-I = + low on x, low on Y

negative correlation (+)(-) = - high on X, low on Y
(-)(+)  = - low on X, high on Y
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The z score method is not often used in actual computation because it involves
the conversion of each score into a sigma score. Two other methods, a deviation
method and a raw score method, are more convenient, more often used, and yield
the same result.

The deviation method uses  the following formula and requires the setting up
of a table with seven  columns.

where Z J? = the sum of the x subtracted from each X score squared
(x-z)z

Z $ = the sum of the k subtracted from each Y score squared
(Y-32

Z xy = the cross product of the mean subtracted from that score
(XP%(Y-Y)

Using the data from Table 10.4, with reading scores being the X variable and
arithmetic scores  being the Y variable, the researcher calculates Y like this:

X Y x x2 Y YZ XY

95 76 20 400 1 1 +20
90 78 15 225 3 9 +45
85 77 10 100 2 4 +20
80 71 5 25 -4 16 -20
75 75 0 0 0 0 0
70 79 -5 25 4 16 -20
65 73 -10 100 -2 4 +20
60 72 -15 225 -3 9 +45
55 74 -20 400 -1

xX=675 ZY=675 x$=1500 x$=6:
+20

xxy=130
x=75 Y=75

130 130 130
y= Jmj@j = $@G ===.433

The  raw xcre method requires the use of five columns, as illustrated below using
the same data.
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where E X = sum of the X scores
Z Y = sum of the Y scores

E X2 = sum of the squared X scores
Z Y2 = sum of the squared Y scores

Z XI’ = sum of the products of paired X and Y scores
N = number of paired scores

X Y x2 P XY

95 76 9025 5776 7220
90 78 8100 6084 7020
85 77 7225 5929 6545
80 71 6400 5041 5680
75 75 5625 5625 5625
70 79 4900 6241 5530
65 73 4225 5329 4745
60 72 3600 5184 4320
55 74 3025 5476 4070

2X=675 x.=675 Z X2 = 52,125 Z Y’ = 50,685 z XY = 50,755

Y= 9 (50,755) - (675) (675)
\/9(52,125) - (675)z~9(50,685)  - (675)’

=
456,795 - 455,625

,/469,125  - 455,625d456,165  - 455,625
1170

= $zziJZ

1170
= (116.19)(23.24)

1170= 2700.26 = ,433

Now take the 25 children selected earlier and calculate the correlation of IQ
with pretest scores. The correlation for IQ with pretest scores for the entire popu-
lation of 100 children is +.552.  How does the sample’s correlation relate to the car-
relation for the population? Now calculate the correlation of the pretest and
posttest scores. The correlation for the population of 100 children between their
pretest scores and their posttest scores is +.834.  How does the sample’s correla-
tion relate to the correlation for the population?

Rank Order Correlation (p)

A particular form of the Pearson product-moment correlation that can be used
with ordinal data is known as the Spearman  rank order coefficient of correlation. The
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symbol p (rho) is used to represent this correlation coefficient. The paired variables
are expressed as ordinal values (ranked) rather than as interval or ratio values. The
correction lends itself to an interesting graphic demonstration.

In the following example, the students ranking highest in IQ rank highest in
mathematics, and those lowest in IQ, lowest in mathematics.

Pupil
Achievement in

IQ Rank Mathematics Rank

A 1 1

:
2 2
3 3

D 4 4
E 5 5

Perfect positive coefficient of correlation
p = +1.00
In the following example the students ranking highest in time spent in prac-

tice rank lowest in number of errors.

Pupil
Time Spent in Number of Typing
Practice Rank Errors Rank

A 1 5

: 2 3 3++e 4 3
D 4 2
E 5 1

Perfect negative coefficient of correlation

p = -1.00
In the following example, there is probably little more than a pure chance rela-

tionship (due to sampling error) between height and intelligence.

Pupil Height Rank IQ Rank

A

:
D
E

Very low coefficient of correlation
D = +.10
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To compute the Speannan rank order coefficient of correlation, this rather sim-
ple formula is used:

6x02
‘=I- N(Nz-1)

where D = the difference between paired ranks
Z 9 = the sum of the squared differences between ranks

N = number of paired ranks

If the previously used data were converted to ranks and calculated Spear-
man’s p, it would look like this:

Pupil
Rank in
Reading

Rank in
A r i t h m e t i c  D D2

Betty
John
K&herine
Charles
Larry
DONI.?
Edward
Mary

1 4
2 2
3 3
4 9
5 5
6 1
7 7
8 8
9 6

- 3
0
0 0

-5 25
0 0
5 25
0 0
0 0
3 9

XL?=68

6 (68)p=l- 9(81_1) =I-
408=1- 720 =I - ,567

= +.433

408
9 (80)

As has been just demonstrated, Spearman’s p and Pearson’s I yielded the same
result. This occurs when there are no ties. When there are ties, the results will not
be identical, but the difference will be insignificant.

The Spearman  rank order coefficient of correlation computation is quick and
easy. It is an acceptable method if data are available only in ordinal form. Teach-
ers may find this computation method useful when conducting studies using a
single class of students as subjects.

Phi Correlation Coefficient (@)

The data are considered dichotomous when there are only two choices for scoring
a variable (e.g., pass-fail or female-male). In these cases  each person’s score usu-
ally would be represented by a 0 or 1, although sometimes 1 and 2 are used instead.
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The Pearson product-moment correlation, when both variables are dichotomous, is
known as the phi (4) coefficient. The formula for $J is simpler than for Pearson’s Y
but algebraically identical. Because there are rarely two dichotomous variables of
interest of which the researcher wants to know the relationship, the formula will
not be presented here. This brief mention of $ is to make the reader aware of it.
Those wishing more  detail should refer to one of the many statistics texts available
(e.g., H&man,  1996; Glass &Hopkins, 1996).

INTERPRETATION OF A CORRELATION COEFFICIENT

Two circumstances can cause a higher or lower correlation than usual. First, when
one person or relatively few people have a pair of scores differing markedly from
the rest of the sample’s scores, the resulting I may be spuriously high. When this
occurs, the researcher needs to decide whether to remove this individual’s pair of
scores (known as an outlier)  from the data analyzed. Second, when all other things
are equal, the more homogeneous a group of scores, the lower their correlation
will be. That is, the smaller the range of scores, the smaller I will be. Researchers
need to consider this potential problem when selecting samples that may be highly
homogeneous. However, if the researcher knows the standard deviation of the het-
erogeneous group from which the homogeneous group was selected, Glass and
Hopkins (1984) and others describe a formula that corrects for the restricted range
and provides the correlation for the heterogeneous group.

There are a number of ways to interpret a correlation coefficient or adjusted ax-
relation coefficient, depending on the researcher’s purpose and the circumstances
that may influence the correlation’s magnitude. One method that is frequently pre-
sented  is to use a crude criterion for evaluating the magnitude of a correlation:

Coefficient (r) Relationship

.oo to 20 Negligible
20 to .40 LOW
.40 to .60 Moderate
.60to 30 Substantial
30 to 1.00 High to very high

Another interpretative approach is a test of statistical significance of the COT-
relation, based on the concepts of sampling error and tests of significance described
in Chapter 11.

Still another way of interpreting a correlation coefficient is in terms of vari-
ance. The variance of the measure that the researcher wants to predict can be
divided into the part that is explained by, or due to, the predictor variable and the
part that is explained by other factors (generally unknown) including samplin
error.  The researcher finds this percentage of explained variance by calculating YF,
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known as the coejjkient  ofdetermination.  The percentage of variance not explained
by the predictor variable is then 1 - 1’.

An example may help the reader understand this important concept. In com-
bining studies using IQ to predict general academic achievement, Walberg (1984)
found the overall correlation between these variables to be .71. We can use this cor-
relation to find r* = .50.  This means that 50% of the variance in academic achieve-
ment (how well or poorly different students do) is predictable from the variance
of IQ. This also obviously means that 50% of the variance of academic achieve-
ment is due to factors other than IQ, such as motivation, home environment,
school attended, and test error. Walberg also found that the correlation of IQ with
science achievement was .48. This means that only 23% (r*) of variance in science
achievement is predictable by IQ and that 77% is due to other factors, some known
and some unknown. Finally, the correlation of IQ and posttest  scores reported ear-
lier for the 100 children in our data set in Appendix B is +.638 and between the
pre-  and posttests +.894. Thus, 41% (.638’)  of the variance in posttest  scores is pre-
dicted by IQ while 80% (.894’)  is predicted by pretest scores.

There are additional techniques, some too advanced for this introductory text,
that allow researchers to use more than one variable. Thus, it is possible, for exam-
ple, to use a combination of IQ, pretest scores, and other measures such as moti-
vation and a socioeconomic scale to predict academic achievement (posttest scores).
This multiple correlation would increase the correlation, which would, in turn,
increase the percent of variance of academic achievement that is explained by
known factors. The next chapter (11) discusses how multiple regression results in
multiple correlations.

Misinterpretation of the Coefficient of Correlation

Several fallacies and limitations should be considered in interpreting the meaning
of a coefficient of correlation. The coefficient does not imply a cause-and-effect
relationship between variables. High positive correlations have been observed
between the number of storks’ nests and the number of human births in north-
western Europe and between the number of ordinations of ministers in the New
England colonies and the consumption of gallons of rum. These high correlations
obviously do not imply causality As population increases, both good and bad things
are likely to increase in frequency.

Similarly, a zero (or even negative) correlation does not necessarily mean that
no causation is possible. Glass and Hopkins (1996) point out, “Some studies with
college students have found no correlation between hours of study for an exami-
nation and test performance. [This is likely due to the fact that] some bright
students study little and still achieve average scores, whereas some of their less
gifted classmates study diligently but still achieve an average performance. A con-
trolled experimental study would almost certainly show some causal relationship”
(p. 139).
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Prediction

An important use of the coefficient of correlation and the Y on X regression line is
for prediction of unknown Y values from known X values. Because it is a method
for estimating future performance of individuals on the basis of past performance
of a sample, prediction is an inferential application of correlational analysis. It has
been included in this chapter to illustrate one of the most useful applications of
correlation.

Let us assume that a college’s admissions officers wish to predict the likely
academic performance of students considered for admission or for scholarship
grants. They have built up a body of data based on the past records of a substan-
tial number of admitted college students over a period of several years. They have
calculated the coefficient of correlation between their high school grade-point aver-
ages and their college freshman grade-point averages. They can now construct a
regression line and predict the future college freshman GPA for any prospective
student, based on his or her high school GPA.

Let us assume that the admissions officers found the coefficient of correlation
to be +.52. The slope of the line could be used to determine any Y values for any
X value. This process would be quite inconvenient, however, for all grade-point
averages would have to be entered as sigma (z) values.

A more practicable procedure would be to construct a regression lie with a
slope of b so that any college grade-point average (Y) could be predicted directly
from any high school grade-point average. The b regression lie and a carefully
drawn graph would provide a quick method for prediction. For example

I f  r=+.52, then

s, = .50 b=+.52$$

S, = .60 b = +.43

X, is student A’s high school GPA, Ya his predicted college GPA.
X, is student B’s high school GPA, YR her predicted college GPA.

Figure 10.11 uses these data to predict college GPA from high school GPA.
Another, and perhaps more accurate, alternative for predicting unknown Vs

from known KS is to use the regression equation rather than the graph. The for-
mula for predicting Y from X is

where ? = the predicted score (e.g., college freshman Gl’A)
X = the predictor score (e.g., high school GPA)
b = slope
a = constant, 01 Y intercept



Chapter lO/Descriptive Data Analysis 375

High School GPA

FIGURE 10.11 A Regression Line Used to Predict College
Freshman GPA from High School GPA

We have already seen that b = S,/S, We can fiid a by a = y - bX. Given the
following data, we can then find the most likely freshman GPA for two students.

b = .43 (found earlier)

x = 2.10

Y = 2.40

a = 2.40 - 2.10(.43) = 2.40 - .90 = 1.50

X, (student A’s high school GPA) = 2.00

X, (student B’s high school GPA) = 3.10

?, = 1.50 + .43(XJ

= 1.50 + .43(2.00)
= 1.50 + .86

= 2.36

Pb = 1.50 + .43(X,)

= 1.50 + .43(3.10)

= 1.50 + 1.33

= 2.83



376 Part III/Data Analysis

For student A, whose high school GPAwas below the mean, the predicted col-
lege GPA was also below the mean. For student B, whose high school GPA was
well above the mean, the predicted GPA was substantially above the mean. These
results are consistent with a positive coefficient of correlation in general: high in
X, high in Y; low in X, low in Y.

STANDARD ERROR OF ESTIMATE

When the coefficient of correlation based on a sufficient body of data has been deter-
mined as - 1.00, there will be no error of prediction. Perfect correlation indicates
that for every increase in X, there is a proportional increase (when +) or propor-
tional decrease (when -) in Y. There are no exceptions. But when the magnitude of
I is less than +l.OO  or -1.00, error of prediction is inherent because there have been
exceptions to a consistent, orderly relationship. The regression line does not coin-
cide or pass through all of the coordinate values used in determining the slope.

A measure for estimating this prediction error is known as the standard ever
ofestimate (S,).

S&t=s,\/l-uz

As the coefficient of correlation increases, the prediction error  decreases. When
Y = k1.00

sestY = s&7 = s,m = S,(O) = 0

whenr-0

S&Y = s,jC$ = S,(l)  = s,

When Y = 0 (or when the coefficient of correlation is unknown), the best blind
prediction of any Y from any X is the mean of Y. This is true because we know that
most of the scores in a normal distribution cluster around the mean and that about
68% of them would probably fall within one standard deviation from the mean. In
this situation the standard deviation of Y may be thought of as the standard error
of estimate. When r = 0, S, y = S,

If the coefficient of correlation is more  than zero, this blind prediction can be
improved on in these ways:

1. By plotting Y from a particular X from the regression line (see Figure 10.12)
2. By reducing the error of prediction of Y by calculating how much S, is reduced

by the coefficient of correlation
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x X

FIGURE 10.12 A Predicted Y Score from a Given X
Score, Showing the Standard Error of
Estimate

For example, when I = k.60

s&Y = s$q = s,@$ = sm

= S,,,,k = .BOS,

Thus the estimate error of Y has been reduced from S, to .BOS,. Interpretation
of the standard error of estimate is similar to the interpretation of the standard
deviation. If Y = +.6OS,  the standard error of estimate of Y will be ,805,.  An actual
performance score of Y would probably fall within a band of + ,805,  from the pre-
dicted Yin about 68 of 100 predictions. In other words, the probability is that the
predicted score would not be more than one standard error of estimate from the
actual score in about 68% of the predictions.

In addition to the applications described, the coefficient of correlation is indis-
pensable to psychologists who construct and standardize psychological tests and
inventories. A few of the basic procedures are briefly described.

Computing the coefficient of correlation is the usual procedure used to evalu-
ate the degree of validity and reliability of psychological tests and inventories (see
Chapter 9 for a mope detailed description of these concepts).

The Coefficient of Validity
A test is said to be valid to the degree that it measures what it claims to measure,
or, in the case of predictive validity, to the extent that it predicts accurately such
types of behavior as academic success or failure, job success or failure, or stability
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or instability under stress. Tests are often validated by correlating test scores against
some outside criteria, which may be scores on tests of accepted validity, successful
performance or behavior, or the expert judgment of recognized authorities.

The Coefficient of Reliability
A test is said to be reliable to the degree that it measures accurately and consis-
tently, yielding comparable results when administered a number of times. There
are a number of ways of using the process of correlation to evaluate reliability:

1. Test-retest-correlating the sccres  on two or more successive administrations
of the test (administration number 1 versus administration number 2)

2. Equivalent forms--correlating the scores when groups of individuals take
equivalent forms of the test (form L versus form N)

3. Split halves-correlating the sccres on the odd items of the test (numbers 1,3,
5,7, and so forth) against the even items (numbers 2,4,6,8,  and so forth). This
method yields lower correlations because of the reduction in size to two tests
of half the number of items. This may be corrected by the application of the
Spearman-Brown prophecy formula.

2Y
y=l+l

If Y = k.60,

1.20Y = 1+.60  = +.75

A NOTE OF CAUTION

Statistics is an important tool of the research worker, and an understanding of sta-
tistical terminology, methodology, and logic is important for the consumer of re-
search. Anumber  of limitations, however, should be recognized in using statistical
processes and in drawing conclusions from statistical evidence:

1. Statistical process, a servant of logic, has value only if it verifies, clarifies, and
measures relationships that have been established by clear, logical analysis.
Statistics is a means, never an end, of research.

2. A statistical process should not be employed in the analysis of data unless it
adds clarity or meaning to the analysis of data. It should not be used as win-
dow dressing to impress the reader.

3. The conclusions derived from statistical analysis will be no more accurate or
valid than the original data. To use an analogy, no matter how elaborate the
mixer, a cake made of poor ingredients will be a poor cake. All the refinement
of elaborate statistical manipulation will not yield significant truths if the data
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result from crude or inexact measurement. In computer terminology this is
known as GICO,  “garbage in-garbage out.”

4. AU treatment of data must be checked and doublechecked  frequently to mini-
mize the likelihood of errors in measurement, recording, tabulation, and analysis.

5. There is a constant margin of error wherever measurement of human beings
is involved. The error is increased when qualities or characteristics of human
personality are subjected to measurement or when inferences about the pop-
ulation are made from measurements derived from statistical samples.

When comparisons or contrasts are made, a mere number difference is not
in itself a valid basis for any conclusion. A test of statistical significance should
be employed to weigh the possibility that chance in sample selection could
have yielded the apparent difference. To apply these measures of statistical
significance is to remove some of the doubt from the conclusions.

6. Statisticians and liars are often equated in humorous quips. There is little
doubt that statistical processes can be used to prove nearly anything that one
sets out to prove if the procedures used are inappropriate. Starting with false
assumptions, using inappropriate procedures, or omitting relevant data, the
biased investigator can arrive at false conclusions. These conclusions are often
particularly dangerous because of the authenticity that the statistical treat-
ment seems to confer. Of course, intentionally using inappropriate procedures
or omitting relevant data constitutes unethical behavior and is quite rare.

Distortion may be deliberate or unintentional. In research, omitting  certain facts
or choosing only those facts favorable to one’s  position is as culpable as actual dis-
tortion, which has no place in research. The reader must always try to evaluate the
manipulation of data, particularly when the report seems to be persuasive.

SUMMARY

This chapter deals with only the most elementary descriptive statistical concepts.
For a more  complete treatment the reader is urged to consult one or more of the
references listed.

Statistical analysis is the mathematical process of gathering, organizing, ana-
lyzing, and interpreting numerical data and is one  of the basic phases of the research
process. Descriptive statistical analysis involves the description of a particular group.
Inferential statistical analysis leads to judgments about the whole population, to
which the sample at hand is presumed to be related.

Data are often organized in arrays in ascending or descending numerical order.
Data are often grouped into class intervals so that analysis is simplified and char-
acteristics rmm readily noted.

Measures of central tendency (mean, median, and mode) describe data in
terms of some sort of average. Measures of position, spread, or dispersion describe
data in terms of relationship to a point of central tendency. The range, deviation,
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variances, standard deviation, percentile, and Z (sigma) score are useful measures
of position, spread, or dispersion.

Measures of relationship describe the relationship of paired variables, quanti-
fied by a coefficient of correlation. The coefficient is useful in educational research
in standardizing tests and in making predictions when only some of the data are
available. Note that a high coefficient does not imply a cause-and-effect relation-
ship but merely quantifies a relationship that has been logically established prior
to its measurement.

Statistics is the servant, not the master, of logic; it is a means rather than an
end of research. Unless basic assumptions are valid; unless the right data are care-
fully gathered, recorded, and tabulated; and unless the analysis and interpreta-
tions are logical, statistics can make no contribution to the search for truth.

E X E R C I S E S  ( A N S W E R S  I N  A P P E N D I X  I)

More than half the families in a community can have an annual income that is lower
than the mean income for that community Do you agree or disagree? why?

The median is the midpoint between the highest and the lowest scores in a distribu-
tion. Do you agree or disagree? Why?

Compute the mean and the median of this distribution:
74
72
70
65
63
61
56
51
42
40
37
33

Determine the mean, the median, and the range of this distribution:
88
86
85
80
80
77
75
71
65
60
58
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5. Compute the variance (n’) and the standard deviation (LT) using the formula for the
population (as indicated by the Greek letters) and then for a sample (S and S’, respec-
tively) for this set of scores:

27
27
25
24
20
18
16
16
14
12
10

7

6. The distribution with the larger range is the distribution with the larger standard devi-
ation. Do you agree or disagree? Why?

7. If five points were added to each score in a distribution, how would this change each
of the following:
a. the range
b. the mean
c. the median
d. the mode
e. the variance
f. the standard deviation

8. Joan Brown ranked 27th in a graduating class of 367. What was her percentile rank?

9. In a coin-tossing experiment where N = 144 and P (probability) = SO, draw the curve
depicting the distribution of probable outcomes of heads appearing for an infinite
number of repetitions of this experiment. Indicate the number of heads for the mean,
and at 1,2, and 3 standard deviations from the mean, both positive and negative.

IO. Assuming the distribution to be normal with a mean of 61 and a standard deviation of
5, calculate the following standard score equivalents:

x x z T

66
58
70
61
52

11. Using the normal probability table in Appendix C, calculate the following values:
a. below ~1.252 %
b. above -1.252 %
c. between -1.40zand  +1.67z %
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12.

13.

14.

15.

16.

d. between +1.50zand  +2.5Oz %
e. 65th percentile rank z
f. 43rd percentile rank z
g. top 1% of scores z
h. middle 50% of scores z to 2
i. not included between -1.OOzand  +l.OOz %
j. 50th percentile rank 7.

Assuming a normal distribution of scores, a test has a mean score of 100 and a stan-
dard deviation of 15. Compute the following scores:
a. score that cuts off the top 10%
b. score that cuts off the lower 40%
c. percentage of scores above 90 %
d. score that occupies the 68th percentile rank
e. score limits of the middle 68% to

Consider the following table showing the performance of three students in algebra and
history:

Mean 0 Tom

Algebra 90 30 60
History 20 4 25

Who had:

DOIUU Hany

100 85
22 19

a. the poorest score on either test?
b. the best score on either test?
c. the most consistent scores on both tests?
d. the least consistent scores on both tests?
e. the best mean score  on both tests?
f. the poorest mean score on both tests?

The coefficient of correlation measures the magnitude of the cause-and-effect relation-
ship between paired variables. Do you agree or disagree? why?

Using  the Spearman  rank order coefficient of correlation method, compute p.

X Variable Y Variable

Mary 1 3
Peter 2 4
Paul 3 1
Helen 4 2
Ruth 5 7
Edward 6 5
John 7 6

Two sets of paired variables are expressed in z (sigma) scores. Compute the coefficient
of correlation between them.
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17.

18.

19.

20.

21.

+.70 + .55
-20 - .32

f1.50 +2.00
f1.33 +1.20
-.88 ml.06
+ .32 -.40

ml.00 +.50
+.67 +.80

Using the Fearson product-moment raw score  method, compute the coefficient of COP
relation between these paired variables:

66 42
50 55
43 60

8 24
12 30
35 18
24 48
20 35
16 22
54 38

A class took a statistics test. The students completed all of the questions. The coefficient
of correlation between the number of correct and the number of incorrect responses for
the class was

There is a significant difference between the slope of the regression line I and that of
the regression line b. Do you agree? Why?

Compute the standard error of estimate of Y from X when:

S, = 6.20
I = f.60

Given the following information, predict the Y score from the given X, when X= 90,
and:
a. I = +.60

X=80 s,=12
Y=40 S,=8

b. T= -.60
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ENDNOTE

1. N represents the number of subjects in the
population; n represents the number of subjects in
a sample.
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